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ABSTRACT
The Tree-Encoded Bitmap (TEB) is a tree-based bitmap compression
scheme that maps runs in a bitmap to leaf nodes in a binary tree.
Currently, TEBs perform updates using an auxiliary differential
data structure. However, consulting this additional data structure at
every read introduces bothmemory and read overheads. Tomitigate
the shortcomings of differential updates, we propose algorithms
to update TEBs in place. To that end, we classify the updates that
can occur in a TEB into two types: run-forming and run-breaking.
Run-forming updates correspond to leaf nodes at the lowest level
of the binary tree. All other updates are run-breaking. Each type of
update requires different handling. Through experimentation with
synthetic data, we determined that in-place run-forming updates are
2-3× faster than differential updates, while run-breaking updates
cannot be efficiently performed in place. Therefore, we propose a
hybrid solution that performs run-forming updates in place and
stores run-breaking updates in a differential data structure. Our
experiments with synthetic data show that our hybrid solution
performs updates faster than the differential approach. For example,
for a workloadwhere 20% of the updates are run forming, our hybrid
solution is 69% faster on average.

Artifact Availability: The source code is available at https:
//github.com/marcellus-saputra/Thuja.
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1 INTRODUCTION
Bitmap indexes have a long history in database systems [5, 7, 8].
Traditionally, they are mainly used on low cardinality attributes and
read-heavy workloads. Bitmap indexes are usually sparse, with a
few 1-bits interspersed between 0-bits. The size of an uncompressed
bitmap index depends on both the number of rows and the cardinal-
ity of the indexed attribute, and thus can be very large. Therefore,
to reduce the size, bitmap indexes typically employ compression.

The Tree-Encoded Bitmap (TEB) [6] is a novel bitmap compres-
sion scheme that represents bitmaps as binary trees. Specifically,
TEBs map 1-runs and 0-runs to leaf nodes, where the proximity of
a leaf node to the root indicates the length of the run. Then, they
encode the binary tree into two bitmaps, T and L. T represents the
structure of the tree and L contains the labels of the leaf nodes.
A label is either a 1-bit or a 0-bit, indicating a 1-run and a 0-run,
respectively. TEBs boast better compression ratios than the state-
of-the-art Roaring bitmap [4] while also supporting logarithmic
random access. However, their low read and memory overheads
come at the cost of a high update overhead, as the RUM conjec-
ture [1] indicates.

Currently, TEBs only support differential updates, i.e., they use
an auxiliary differential data structure to store the updates. Typ-
ically, the differential data structure is also a compressed bitmap.
Once the differential data structure reaches a certain number of
stored updates, it is merged with the TEB. Differential updates offer
a high upfront update performance, but this comes at the cost of
read and memory overhead. For every read, the differential data
structure needs to be consulted first before accessing the TEB. More-
over, as more updates are stored in the differential data structure,
it becomes more complex and thus less compressible, leading to
further increased read and memory overhead, which can only be
mitigated by merging the differential data structure with the TEB.

In-place updates avoid the use of differential data structures
along with their associated read and memory overheads. Specifi-
cally, to perform an in-place update in a TEB, we need to navigate
and directly modify the T and L bitmaps. In this paper, we provide
algorithms for performing updates in place as well as a mechanism
that combines in-place updates with differential updates to achieve
the best of both worlds. In summary, after presenting the key con-
cepts of TEBs (Section 2) we make the following contributions:
(1) We identify two types of updates that can occur in TEBs, i.e.,
run-forming and run-breaking updates. An update is run-forming
if it affects a leaf node that resides at the lowest possible level of

https://github.com/marcellus-saputra/Thuja
https://github.com/marcellus-saputra/Thuja
https://doi.org/10.1145/3538712.3538745
https://doi.org/10.1145/3538712.3538745


SSDBM 2022, July 6–8, 2022, Copenhagen, Denmark Saputra, Tzirita Zacharatou, Papadias, Markl

the binary tree; otherwise, it is run breaking. We handle each type
accordingly (Section 3).
(2) We propose a hybrid approach for updating TEBs that combines
in-place with differential updates. This approach performs run-
forming updates in place while storing run-breaking updates in a
differential data structure (Section 4).
(3) Through experiments on synthetic data, we show that our ap-
proach is faster than pure differential updates; the number of run-
forming updates that are performed in a given workload determines
the degree of the achieved speedup (Section 5).

We then discuss related work in Section 6, and conclude the
paper in Section 7.

2 TREE-ENCODED BITMAPS
In this section, we discuss the basic workings of TEBs; how they
are constructed, navigated, and how they are currently updated.
For more details about TEBs, we refer the reader to [6].

Construction.A TEB is constructed in two steps. First, a perfect
binary tree is constructed on top of the original bitmap. If the length
of the original bitmap is not a power of 2, then 0-bits are appended
to the original bitmap until its length is equal to the next nearest
power of 2. Next, the binary tree is pruned bottom-up; if two sibling
leaf nodes have the same label, they are removed and their label
is assigned to their parent node. After the entire tree has been
appropriately pruned, it is encoded into two bitmaps: T and L.
Namely, while traversing the tree in level order, if a leaf node is
visited, then a 0-bit is appended to T and its label is appended to L;
otherwise, a 1-bit is appended to T while nothing is appended to L.

Navigation. The ID of the right child of a given inner node i can
be calculated using the formula riдht − child = 2 · rank(i), where
the rank of i indicates the inclusive cumulative number of 1-bits
preceding i in T . Counting all the 1-bits in the first i bits in T is
linear to the size of T . However, TEBs also implement a so-called
rank lookup table, which contains the cumulative number of 1-bits
in T in 512 bit intervals. The granularity of the rank lookup table
is modifiable, but 512 bits per block was found to strike a good
balance between performance and additional memory overhead [6].
A point lookup operation is performed by navigating the TEB until
a leaf node is found, and then returning it. The navigation is guided
by the binary representation of the searched position.

Differential Updates. Currently, TEBs store updates in a differ-
ential data structure, which is typically another compressed bitmap.
Similarly to UpBit [2], every bit in the differential data structure
denotes whether its position has been updated. The actual value of
a given position p can then be obtained by XORing the value at p
in the TEB with the bit at p in the differential data structure. As up-
dates accumulate within the differential data structure, it becomes
more complex and thus, less compressible. Therefore, when the
differential data structure reaches a certain size, or after a certain
number of updates have been stored, a merge operation is triggered.
The merge operation applies all stored updates into the TEB and
resets the differential data structure. Currently, merging is done by
first decompressing the TEB, then bitwise XORing the TEB with
the differential data structure, and finally constructing a new TEB
from the resulting bitmap. The Roaring bitmap [4] was found to be
the most suitable differential data structure.

3 IN-PLACE UPDATES
In this section, we discuss how to perform in-place point updates
in TEBs. Note that range updates are out of our scope. To update a
TEB, we first need to find the leaf node P that corresponds to the
updated position, for which we can use a point lookup. Depending
on whether P resides at the lowest possible level of the tree or not,
we classify updates into two types that require different handling:
run-forming and run-breaking updates.

3.1 Run-Forming Updates
A run-forming update is characterized by P residing at the lowest
possible level of the tree. This is important because every leaf node
at the lowest possible level of the tree represents a single individual
bit in the original bitmap. Therefore, to perform a run-forming
update in place, we only need to change P ’s label bit in L. This
is done by retrieving the position of P ’s label bit and negating
it. Note that run-forming updates may lead to additional pruning
opportunities. Specifically, after we change the label of P , it may
have the same label as its sibling, whichmeans they could be pruned
to save additional space. Similarly, after pruning P and its sibling,
P ’s parent node may also be assigned the same label as its sibling,
which leads to more pruning opportunities.

Pruning a TEB in place is challenging for several reasons. First,
we must modify theT and L bitmaps directly. However, the original
TEB implementation by Lang et al. [6] assumes static TEBs and thus
does not contain any functionality to modify T and L. Second, to
prune a pair of leaf nodes, we need to know the node ID of the parent
node. However, TEBs only support efficient downward navigation
from the root to the leaves using the rank lookup table. Therefore,
to obtain the parent node, we need to traverse the TEB from the
root, which is a linear time operation. Finally, removing/inserting
bits from/into T and L is a linear time operation, since T and L are
stored as arrays of 64-bit integer words. In the worst case, every
word needs to be adjusted after removing or inserting even a single
bit. As a result, a naive in-place pruning algorithm that traverses
the TEB from the root and inserts/removes bits from/into T and L
for every pair of pruned nodes incurs a quadratic complexity.

To perform run-forming updates efficiently in place, we use the
following two key insights. First, a TEB remains correct after per-
forming a run-forming update even without pruning. Second, if we
know in advance all the positions in T and L that are affected by
pruning a pair of leaf nodes, we can batch all the changes to the T
and L bitmaps into a single operation instead of performing a series
of removals and insertions. The first insight allows pruning the
TEB only after performing several updates instead of pruning after
every update, similar to merging in differential updates. To lever-
age our second insight, prior to the actual pruning, we traverse the
TEB and mark the positions that require modifications. This allows
to perform all changes to T and L in a single operation, thereby
optimizing the runtime. Finally, we note that the run-forming up-
dates themselves only require a point lookup operation followed by
negating a single bit in L, and thus, they are extremely lightweight.
Overall, our algorithm performs run-forming updates in place while
delaying pruning and batching changes toT and L. That way, as we
show in Section 5, in-place run-forming updates can be performed
2-3× faster than differential updates.



In-Place Updates in Tree-Encoded Bitmaps SSDBM 2022, July 6–8, 2022, Copenhagen, Denmark

3.2 Run-Breaking Updates
An update is run breaking if the leaf node P does not reside at the
lowest level, i.e., P represents a run. Therefore, to accurately repre-
sent the updated position, the run needs to be broken. A broken run
can only be represented by a subtree, which means that P needs
to be expanded into a subtree. This is achieved by first turning P
into an inner node by setting its bit in T to a 0-bit. Nodes are then
inserted in pairs into the TEB to represent P ’s descendants.

However, early experiments show that our implementation of
in-place run-breaking updates is not efficient. This is because, un-
like run-forming updates, the majority of run-breaking updates
cannot be performed in place without heavily modifying T and L.
Additionally, TEBs allocate space statically, and thus it is impossi-
ble to guarantee that there is enough allocated space to perform
every run-breaking update in place. Finally, we argue that a run-
breaking update requires at least linear time, unless T and L can be
directly modified in sub-linear time. This could be achieved by first
marking all positions in T and L that need to be changed using a
point lookup-like operation, followed by performing all necessary
modifications to T and L in a single iteration.

4 HYBRID UPDATES
In-place run-forming updates are significantly faster than differen-
tial updates, whereas in-place run-breaking updates are slower. To
achieve the best of both worlds, we devise a hybrid approach that
combines in-place and differential updates. In essence, our hybrid
approach for updating TEBs first checks whether an update is run
forming. If it is, then it performs the update in place. Otherwise, it
stores it in a differential data structure.

Let us now describe how our hybrid approach for updating TEBs
works. Let p be the position of the bitmap that we want to update
with value v , B be the base TEB, and D be the differential data
structure. First, we perform a point lookup for p on both D and B
to determine the actual value at position p by XORing D[p] with
B[p]. From the point lookup on B we also obtain node n, the leaf
node that represents p. If the actual value is equal to v , then the
update is redundant and is aborted. Otherwise, we check n to see if
it resides at the lowest possible level. If it does, then the update is
run forming, and thus we perform it by negating B[p]. Otherwise,
if n does not reside at the lowest possible level, then we perform
the update as a differential one. To do that, we negate D[p].

Our hybrid approach brings the following benefits. First, since
some updates are not stored in the differential data structure, its size
increases at a slower pace, which reduces the associated memory
overhead. Second, since fewer differential updates are performed,
the differential data structure is mergedwith the TEB less frequently.
As a result, fewer merge operations are needed compared to using
pure differential updates in the long run.

We must also note that the above-mentioned benefits of the
hybrid approach only apply to workloads that perform several run-
forming updates. Yet, there is no guarantee that any number of
run-forming updates are possible in a given TEB, i.e., that the TEB
has leaf nodes at the lowest possible level, and that many such leaf
nodes exist. Additionally, even if there are leaf nodes at the lowest
possible level, a given sequence of updates might not affect these
leaf nodes. In this case, our approach performs identically to regular
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Figure 1: Update Latency.
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Figure 2: Lookup Latency.

differential updates. However, we argue that the above-mentioned
situation is a corner case as it would require an extremely clustered
bitmap, e.g., a bitmap for a sorted attribute.

5 EXPERIMENTAL EVALUATION
In this section, we first present our experimental setup and then
evaluate our approach with respect to its update latency, lookup
latency, and space consumption.

5.1 Experimental Setup
We perform the experimental evaluation on a machine with an In-
tel® Core™ i7-8700K CPU@ 3.70GHz processor and 16GB RAM. In
our experiments, we use synthetic bitmaps that we randomly gen-
erated based on two parameters, the bit density d and the clustering
factor f . The bit density d ∈ [0, 1] is the probability of an arbitrary
position containing a 1-bit. The clustering factor f represents the
likelihood that a 1-bit is followed by another 1-bit. To generate the
bitmaps for the experiments in Section 5.2, we perform a Bernoulli
test in every position using d as the test parameter to determine
the bit value. In addition to the bit density d , in Section 5.3 we
also use the clustering factor f as a parameter to reproduce the
bitmaps used by Lang et al [6]. For reproducibility, the souce code
is provided at https://github.com/marcellus-saputra/Thuja.

5.2 Run-Forming Updates
This experiment measures the performance of in-place run-forming
updates. Specifically, we construct two TEBs using a randomly gen-
erated bitmap, one that performs differential updates with Roaring
as its differential data structure, and one that performs in-place
updates. The bitmap has 1 million bits and a bit density of 0.1. We
then randomly generate run-forming updates and apply them to
each TEB. Figure 1 shows the scalability of our in-place TEB in
terms of the number of updates. Even from the first update, run-
forming updates can be performed significantly faster in place than
differential updates. Specifically, in-place run-forming updates are
2.43× faster for the first 100 updates. As more updates arrive, dif-
ferential updates become increasingly more expensive because the
differential data structure becomes more complex with every new
update stored. In contrast, the performance of in-place run-forming
updates remains constant throughout the experiment. As a result,
at 1000 updates, in-place run-forming updates are 3.81× faster than
differential ones.

https://github.com/marcellus-saputra/Thuja
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Figure 3: Average Update Latency for 100K Hybrid Updates.

Furthermore, we compare the point lookup performance of the in-
place TEB and the differential TEB. After applying a certain number
of updates, we perform a point lookup on every position in both
TEB instances and measure the average time. Figure 2 shows that
point lookups are also faster without a differential data structure.
Finally, we measure the space occupied by both approaches: after
1000 run-forming updates, the TEB with differential updates was
10% larger than the TEB with in-place updates, due to the extra
space occupied by the differential data structure.

5.3 Hybrid Updates
This experiment compares the performance between differential
updates and hybrid updates. We randomly generate several bitmaps
that are 1 million bits long in a way that varies the likelihood that
a random update is run forming. This is done by varying the bit
density and clustering factor. Specifically, an update to a bitmap
with high bit density and low clustering is more likely to be run
forming than one to a sparsely populated bitmap with high clus-
tering. For every bitmap, two TEBs are constructed: one that uses
hybrid updates, and one that uses differential updates with Roaring
as the differential data structure. Furthermore, we randomly gener-
ate 100K updates and apply them to both TEBs without checking
beforehand whether they are run-forming updates or not.

We can see from Figure 3 that even when only 7% of all updates
are run-forming, hybrid updates are on average 15% faster than
differential updates. This gap only widens as more run-forming
updates are possible; when 20% of all updates are run forming,
hybrid updates are 69% faster. We also note that as a result of
performing run-forming updates in place, the overall TEB size was
reduced by 4-9%. Furthermore, note that the average update latency
increases as more updates are performed in place. This occurs in
both the TEB with hybrid updates as well as the TEB with plain
differential updates. If more run-forming updates are possible in a
given TEB state, that means there are more leaf nodes at the lowest
level. As a result, the point lookup operation that precedes both
a differential and a hybrid update needs to navigate to the lowest
level, and thus takes longer to perform.

6 RELATEDWORK
In this section, we focus on established approaches for efficient
updates to bitmap indexes.

Update Conscious Bitmaps. UCBs [3] are updated using a
delete-then-insert mechanism. This is achieved by utilizing an aux-
iliary bitvector called the existence bitvector (EV). Each element
in the EV is mapped to a row in the bitmap index. When a row
is updated, its corresponding position in the EV is invalidated by
setting it to 0, and the updated row is appended to the bitmap index.

UpBit. UpBit [2] uses a similar approach to UCBs, but at a more
granular level. Specifically, it maintains one update bitvector (UV)
per domain value. UVs are also compressed and remain highly
compressible throughout their lifetime. As a result, their memory
overhead is negligible. When a row is updated, both the correspond-
ing row in the UV of the previous value and the row in the UV
of the updated value are changed. Updating UVs increases their
complexity, which reduces their compressibility. When the UVs
become significantly large, they are merged with the bitmap index
by applying all updates to the bitmap index and resetting all UVs.

7 CONCLUSION
In this paper, we proposed in-place updates for Tree-Encoded
Bitmaps (TEBs).We achieved this by identifying the two types of up-
dates that can occur in a TEB, i.e., run-forming and run-breaking up-
dates, and handling each type differently. Through our experiments,
we found that run-forming updates can be performed significantly
faster than the current approach that uses differential updates. How-
ever, this was not the case for run-breaking updates. As a result, we
proposed a hybrid solution that performs run-forming updates in
place where possible while performing other updates as differential
updates. Depending on the number of run-forming updates that
are performed in a given sequence of updates, our hybrid approach
is 15-69% faster than differential updates while being identical to
differential updates in the worst case.
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