
* Jorge will be remembered as bright mentor and his words will always nest both in my mind and in my heart — “Somos chingones”

Space-Efficient Random Walks on Streaming Graphs
Serafeim Papadias, Zoi Kaoudi, Jorge-Arnulfo Quiane-Ruiz*, Volker Markl

 
VLDB 2023

Background: Streaming Graphs

2

A streaming graph is a sequence of discrete graph snapshots, ,
where are the vertices, are the edges, and

 is a timestamp

Gt = {Vt, Et}
Vt = {vt

1, …, vt
n} Et = {et

1, …, et
m}

t ∈ N

Background: Streaming Graphs

2

A streaming graph is a sequence of discrete graph snapshots, ,
where are the vertices, are the edges, and

 is a timestamp

Gt = {Vt, Et}
Vt = {vt

1, …, vt
n} Et = {et

1, …, et
m}

t ∈ N

1

0

Background: Streaming Graphs

2

A streaming graph is a sequence of discrete graph snapshots, ,
where are the vertices, are the edges, and

 is a timestamp

Gt = {Vt, Et}
Vt = {vt

1, …, vt
n} Et = {et

1, …, et
m}

t ∈ N

1

0 2

3

Background: Streaming Graphs

2

A streaming graph is a sequence of discrete graph snapshots, ,
where are the vertices, are the edges, and

 is a timestamp

Gt = {Vt, Et}
Vt = {vt

1, …, vt
n} Et = {et

1, …, et
m}

t ∈ N

4

5

1

0 2

3

Background: Streaming Graphs

2

A streaming graph is a sequence of discrete graph snapshots, ,
where are the vertices, are the edges, and

 is a timestamp

Gt = {Vt, Et}
Vt = {vt

1, …, vt
n} Et = {et

1, …, et
m}

t ∈ N

4

5

1

0 2

3

6

Background: Streaming Graphs

2

A streaming graph is a sequence of discrete graph snapshots, ,
where are the vertices, are the edges, and

 is a timestamp

Gt = {Vt, Et}
Vt = {vt

1, …, vt
n} Et = {et

1, …, et
m}

t ∈ N

4

5 7

1

0 2

3

6

Background: Streaming Graphs

2

A streaming graph is a sequence of discrete graph snapshots, ,
where are the vertices, are the edges, and

 is a timestamp

Gt = {Vt, Et}
Vt = {vt

1, …, vt
n} Et = {et

1, …, et
m}

t ∈ N

4

5 7

1

0 2

3

6

8

Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

w :

4

5 7

1

0 2

3

6

8

Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4w :

4

5 7

1

0 2

3

6

8

4

Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4 5w :

4

5 7

1

0 2

3

6

8

4

5

Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4 5 6w :

4

5 7

1

0 2

3

6

8

4

5

6

Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4 5 6 7w :

4

5 7

1

0 2

3

6

8

4

5

6

7

Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4 5 6 7 4w :

4

5 7

1

0 2

3

6

8

4

5

6

7

4

Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4 5 6 7 4w :

4

5 7

1

0 2

3

6

8

4

5

6

7

4

Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4 5 6 7 4w :

4

5 7

1

0 2

3

6

8

4

5

6

7

4

5 6 7 4 Inconsistent

Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4 5 6 7 4w :
Invalid

4

5 7

1

0 2

3

6

8

4

5

6

7

4

5 6 7 4 Inconsistent4

Graph ML Applications do not rely on a single walk!
Applications do not use a small number of random walks but huge corpuses

4

Update to date Walk Corpuses for Accuracy
The Graph ML models are computed on walk corpuses that must be up to date

5

Problem: Efficiency and Space

6

• Efficient resampling of affected random walks (both inconsistent and invalid)

Problem: Efficiency and Space

7

• Efficient resampling of affected random walks (both inconsistent and invalid)

• Effective graph and random walk storage in main memory

Problem: Efficiency and Space

8

• Efficient resampling of affected random walks (both inconsistent and invalid)

• Effective graph and random walk storage in main memory

Which data structure to use for storing
graph and walk information together?

Random Walk Representation with Triplets

• A random walk is decomposed into triplets: where

• : walk identifier

• : position index

• : next vertex identifier

l (wi, pj, vwi,pj+1
)

wi

pj

vwi,pj+1

9

0 1 3 5 4

Random Walk Representation with Triplets

• A random walk is decomposed into triplets: where

• : walk identifier

• : position index

• : next vertex identifier

l (wi, pj, vwi,pj+1
)

wi

pj

vwi,pj+1

9

0 1 3 5 4

(0,2,5)

3

Encoding a Walk Triplet

• Encode a walk triplet into a single integer

• Encode into a single integer:

• Use the Szudzik pairing function to encode and :

• Szudzik Pairing Function

wi, pj f(wi, pj) = wi × l + pj

f(wi, pj) vwi,pj+1
< f(wi, pj), vwi,pj+1

>

10

Encoding a Walk Triplet

• Encode a walk triplet into a single integer

• Encode into a single integer:

• Use the Szudzik pairing function to encode and :

• Szudzik Pairing Function

wi, pj f(wi, pj) = wi × l + pj

f(wi, pj) vwi,pj+1
< f(wi, pj), vwi,pj+1

>

10

Unified Walk and Graph Storage

• Trees of trees structure 
(Level 1) Vertex-tree (Purely-Functional Binary Tree) 
(Level 2) Walk-tree & Edge-tree (Compressed Purely-Functional Binary Tree [1])

Wharf’s Tree of trees Data Structure

11[1] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Low-Latency Graph Streaming Using Compressed Purely-Functional Trees. PLDI’19

Unified Walk and Graph Storage

• Trees of trees structure 
(Level 1) Vertex-tree (Purely-Functional Binary Tree) 
(Level 2) Walk-tree & Edge-tree (Compressed Purely-Functional Binary Tree [1])

Wharf’s Tree of trees Data Structure

11

3

51

20 74

86

[1] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Low-Latency Graph Streaming Using Compressed Purely-Functional Trees. PLDI’19

Unified Walk and Graph Storage

• Trees of trees structure 
(Level 1) Vertex-tree (Purely-Functional Binary Tree) 
(Level 2) Walk-tree & Edge-tree (Compressed Purely-Functional Binary Tree [1])

Wharf’s Tree of trees Data Structure

11

3

51

20 74

86

edge-tree

[1] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Low-Latency Graph Streaming Using Compressed Purely-Functional Trees. PLDI’19

Unified Walk and Graph Storage

• Trees of trees structure 
(Level 1) Vertex-tree (Purely-Functional Binary Tree) 
(Level 2) Walk-tree & Edge-tree (Compressed Purely-Functional Binary Tree [1])

Wharf’s Tree of trees Data Structure

11

3

51

20 74

86

edge-tree

walk-tree

[1] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Low-Latency Graph Streaming Using Compressed Purely-Functional Trees. PLDI’19

Map of Affected Vertices

• Find the earliest affected position

• Save the Key-Value pair, K: V:

• Assume edge gets inserted

wi {vmin, pmin}

{4,2}

Which subparts random walks need resampling?

12

2 3 5 3 0w : 3 5 3 0

3

51

20 74

86

edge-tree
walk-tree

2 4
4

5 7

1

0 2

3

6

8

Wharf’s Tree of tree Structure

Graph (Visually)

Map of Affected Vertices

• Find the earliest affected position

• Save the Key-Value pair, K: V:

• Assume edge gets inserted

wi {vmin, pmin}

{4,2}

Which subparts random walks need resampling?

12

2 3 5 3 0w : 3 5 3 0

3

51

20 74

86

edge-tree
walk-tree

2 4
4

5 7

1

0 2

3

6

8

Wharf’s Tree of tree Structure

Graph (Visually)

Updating Affected Random Walks

• Recreate a walk from its earliest affected position

• Create new walk triplets and insert them into their corresponding walk-tree

• Delete obsolete walk triplets and merge walk-trees under each vertex of the vertex-tree

13

3

51

20 74

86

edge-tree
walk-tree

Wharf’s Tree of tree Structure

2 3 5 3 0w : 3 5 3 0

6 5 3 1

Updating Affected Random Walks

• Recreate a walk from its earliest affected position

• Create new walk triplets and insert them into their corresponding walk-tree

• Delete obsolete walk triplets and merge walk-trees under each vertex of the vertex-tree

13

3

51

20 74

86

edge-tree
walk-tree

Wharf’s Tree of tree Structure

2 3 5 3 0w : 3 5 3 0

6 5 3 1

Updating Affected Random Walks

• Recreate a walk from its earliest affected position

• Create new walk triplets and insert them into their corresponding walk-tree

• Delete obsolete walk triplets and merge walk-trees under each vertex of the vertex-tree

13

3

51

20 74

86

edge-tree
walk-tree

Wharf’s Tree of tree Structure

2 3 5 3 0w : 3 5 3 0

6 5 3 1

Optimised Search

• Seek of a specific walk triplet, search for a specific integer

• Worst-case: decode all triplets

• Better Solution: use ordering properties of pairing functions

• Restrict the search of a triplet-integers within a range of the form where 
 
 

while maintaining the min and max next vertex identifier in each walk-tree

{lb, ub}
lb = < w × l + p, vmin

w,p+1 >
ub = < w × l + p, vmax

w,p+1 >

How to enable fast search among encoding walk triplets?

14

Experimental Study: Throughput & Latency
Task: Random Walk Corpus Update

15

Experimental Study: Memory Footprint
Task: Random Walk Corpus Space Consumption

16

Experimental Study: Downstream Tasks
Tasks: Incremental Graph Embedding, Incremental Personalised PageRank

17

Takeaways

• Key challenges in apps using whole random walk corpuses sampled from streaming graphs: 

 Efficiency + Space  

• Our solution: Wharf

• Efficient batch updates on whole random walk corpuses

• Space-efficient walk representation by coupling C-trees with pairing functions 

• Wharf achieves up to times higher throughput, up to lower latency, and is up
to more space-efficient that the baselines

2.6 × 2 ×
4.4 ×

18

Space-Efficient Random Walks on Streaming Graphs

Thank you!

20

C-trees

21

Compressed Purely-Functional Trees

[1] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Low-Latency Graph Streaming Using Compressed Purely-Functional Trees. PLDI’19

Additional Formulas

• Triplet Decoding ():  

 AND

f(wi, pj) = wi × +pj

pj = f(wi, pj) mod l wi = ⌊
f
l
⌋

22

• Szudzik Pairing Function  
 
 

• Ordering Properties (Corollary 1)  
 x + y < x′￼+ y′￼ → < x, y > ≤ < x′￼, y′￼ >

Additional Formulas

• Triplet Decoding ():  

 AND

f(wi, pj) = wi × +pj

pj = f(wi, pj) mod l wi = ⌊
f
l
⌋

22

• Szudzik Pairing Function  
 
 

• Ordering Properties (Corollary 1)  
 x + y < x′￼+ y′￼ → < x, y > ≤ < x′￼, y′￼ >

Datasets Statistics

• Additionally, we generated synthetic graphs using TrillionG [2]. Specifically:

• Erdos-Renyi (uniform vertex degree distribution)

• Skewed (skewed vertex degree distribution)
23[2] Himchan Park, and Min-Soo Kim. TrillionG: A trillion-scale synthetic graph generator using a recursive vector model.SIGMOD’17

Exp. Study: Mem. Footprint varying and nw l
Task: Random Walk Corpus Space Consumption

24

Experimental Study: Mixed Workload
Task: Workload that contains alternate batches of edge insertions and deletions

25

Experimental Study: Scalability 1
Task: Random Walk Corpus Update on Orkut w.r.t. batch size

26

Experimental Study: Scalability 2
Task: Random Walk Corpus Update on Erdos Renyi synthetic graphs

27

Experimental Study: Skewness
Task: Random Walk Corpus Update on skewed synthetic graphs

28

Experimental Study: Optimised Search
Task: Ablation Study on optimised search when updating random walk corpuses

29

