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Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

w :

4

5 7

1

0 2

3

6

8



Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4w :

4

5 7

1

0 2

3

6

8

4



Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4 5w :

4

5 7

1

0 2

3

6

8

4

5



Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4 5 6w :

4

5 7

1

0 2

3

6

8

4

5

6



Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4 5 6 7w :

4

5 7

1

0 2

3

6

8

4

5

6

7



Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4 5 6 7 4w :

4

5 7

1

0 2

3

6

8

4

5

6

7

4



Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4 5 6 7 4w :

4

5 7

1

0 2

3

6

8

4

5

6

7

4



Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4 5 6 7 4w :

4

5 7

1

0 2

3

6

8

4

5

6

7

4

5 6 7 4 Inconsistent



Background: Random Walk

3

A random walk is a sequence of vertices that represent the graph

4 5 6 7 4w :
Invalid

4

5 7

1

0 2

3

6

8

4

5

6

7

4

5 6 7 4 Inconsistent4



Graph ML Applications do not rely on a single walk!
Applications do not use a small number of random walks but huge corpuses
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Update to date Walk Corpuses for Accuracy
The Graph ML models are computed on walk corpuses that must be up to date
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Problem: Efficiency and Space
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• Efficient resampling of affected random walks (both inconsistent and invalid)
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Problem: Efficiency and Space
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• Efficient resampling of affected random walks (both inconsistent and invalid)


• Effective graph and random walk storage in main memory

Which data structure to use for storing 
graph and walk information together?



Random Walk Representation with Triplets

• A random walk is decomposed into  triplets:  where


•         : walk identifier


•          : position index


•  : next vertex identifier

l (wi, pj, vwi,pj+1
)
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vwi,pj+1
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Encoding a Walk Triplet

• Encode a walk triplet into a single integer


• Encode  into a single integer:  


• Use the Szudzik pairing function to encode  and  : 


• Szudzik Pairing Function
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Unified Walk and Graph Storage

• Trees of trees structure 
(Level 1) Vertex-tree                        (Purely-Functional Binary Tree) 
(Level 2) Walk-tree & Edge-tree (Compressed Purely-Functional Binary Tree [1])    

Wharf’s Tree of trees Data Structure

11[1] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Low-Latency Graph Streaming Using Compressed Purely-Functional Trees. PLDI’19
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Map of Affected Vertices

• Find the earliest affected position


• Save the Key-Value pair, K:   V: 


• Assume edge  gets inserted

wi {vmin, pmin}

{4,2}

Which subparts random walks need resampling?
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Updating Affected Random Walks

• Recreate a walk from its earliest affected position


• Create new walk triplets and insert them into their corresponding walk-tree


• Delete obsolete walk triplets and merge walk-trees under each vertex of the vertex-tree
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Optimised Search

• Seek of a specific walk triplet, search for a specific integer


• Worst-case: decode all triplets 


• Better Solution: use ordering properties of pairing functions


• Restrict the search of a triplet-integers within a range of the form  where 
 
 

while maintaining the min and max next vertex identifier in each walk-tree

{lb, ub}
lb = < w × l + p, vmin

w,p+1 >
ub = < w × l + p, vmax

w,p+1 >

How to enable fast search among encoding walk triplets?
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Experimental Study: Throughput & Latency
Task: Random Walk Corpus Update
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Experimental Study: Memory Footprint
Task: Random Walk Corpus Space Consumption
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Experimental Study: Downstream Tasks
Tasks: Incremental Graph Embedding, Incremental Personalised PageRank
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Takeaways

• Key challenges in apps using whole random walk corpuses sampled from streaming graphs: 

                                                        Efficiency + Space  

• Our solution: Wharf


• Efficient batch updates on whole random walk corpuses


• Space-efficient walk representation by coupling C-trees with pairing functions 

• Wharf achieves up to  times higher throughput, up to  lower latency, and is up 
to more space-efficient that the baselines

2.6 × 2 ×
4.4 ×
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Space-Efficient Random Walks on Streaming Graphs

Thank you!
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C-trees

21

Compressed Purely-Functional Trees

[1] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Low-Latency Graph Streaming Using Compressed Purely-Functional Trees. PLDI’19



Additional Formulas

• Triplet Decoding (  ):  

   AND  

f(wi, pj) = wi × +pj

pj = f(wi, pj) mod l wi = ⌊
f
l
⌋

22

• Szudzik Pairing Function  
 
 

• Ordering Properties (Corollary 1)  
 x + y < x′￼+ y′￼ → < x, y > ≤ < x′￼, y′￼ >
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Datasets Statistics

• Additionally, we generated synthetic graphs using TrillionG [2]. Specifically: 


• Erdos-Renyi (uniform vertex degree distribution)


• Skewed          (skewed vertex degree distribution)
23[2] Himchan Park, and Min-Soo Kim. TrillionG: A trillion-scale synthetic graph generator using a recursive vector model.SIGMOD’17



Exp. Study: Mem. Footprint varying  and  nw l
Task: Random Walk Corpus Space Consumption
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Experimental Study: Mixed Workload
Task: Workload that contains alternate batches of edge insertions and deletions
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Experimental Study: Scalability 1
Task: Random Walk Corpus Update on Orkut w.r.t. batch size
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Experimental Study: Scalability 2
Task: Random Walk Corpus Update on Erdos Renyi synthetic graphs

27



Experimental Study: Skewness
Task: Random Walk Corpus Update on skewed synthetic graphs
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Experimental Study: Optimised Search
Task: Ablation Study on optimised search when updating random walk corpuses
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